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Modelling order-disorder and magnetic transitions in 
iron-aluminium alloys 

F Schmid and K Binder 
Inslitut fiir Physik. Johannes Gulenberg-Universitat hiN, Siaudingeweg 1, DGM) 
Mainz, Federal Republic of Germany 

Received 22 October 1591 

AbslracL Information from ~ e e n l  x-ray and neutron diffuse scattering investigations 
of FeAI alloys and the resulting effective interaction paramelen are used lo MnsUlfNCl 
a model in which the lattice mnligurarional degrees of freedom of lhese alloys are 
described by king spins, and the magnetic momenw of iron atoms are described ty 
clauical Heisenberg spins Starling from the exact ground slate of lhe model, information 
on lhe phase diagram at non-zero temperalure is obtained from both spin wdve theory, 
mean-field approximations and extensive Monte Cad0 simulations. It is shown that 
use of the unrenormalhed interaction parameters from the various experiments yields 
a phase diagram which disagrees severely with experiment even at  the qualitative level. 
However, with a suitable renormalization of the ratio between magnetic and nonmagnetic 
interactions, a qualitatively reasonable phase diagram of lhe model is oblained. The 
consequences for our understanding of effective inleraction parameters in Fe-AI alloys 
are spelled out. and the implications for experimental work are discussed. 

1. Introduction 

The idea that orderdisorder phenomena in binary alloys (AB) can be modelled by 
king spin degrees of freedom (S, = +1,-1 means that lattice site i is occupied by 
an A or a B atom, respectively) has been exploited for a long time (for reviews, see 
for instance DeFontaine 1979, Binder 1986, Stocks and Gonis 1989, Inden and Pitsch 
1991). Model descriptions in which phase diagrams are calculated from effective 
interatomic interaction parameters in the alloy are of interest for various purposes: 
as a test of 'first principles' electronic structure calculations of effective interaction 
parameters (e.g. Gautier el nl 1975, GyorRy and Stocks 1983, ' k c h i  et a1 1983, Bieber 
and Gautier 1984a,b, Gonis et al 1987, 1989, Carlsson 1987, 1988); for testing various 
methods of statistical mechanics, which always involve approximations or limitations 
that need to be explored (e.g. Binder 1980, 1981, 1986, Diinweg and Binder 1987, 
Kikuchi 1974, Kikuchi and wn Baal 1974, Gahn 1982, 1986, Ackermann et a1 1986, 
Diep er al 1986, Sanchez and DeFontaine 1978, 1980, 1982, Mohri et a1 1985, Finel 
and Ducastelle 1986, Semenovskaya 1974, Khachaturyan 1978, Inden 1983, Inden 
and Pepperhoff 1990, Colinet et al 1992); and as a check of the self-consistency of 
effective interaction parameters derived from experiment (e.g. Gerold and Kern 1987, 
Schweika 1990, Pierron-Bohnes el a1 1991a,b). Last, but not least, these models can 
be used to predict the physical properties of the alloy, for a range of parameters 
where experimental data are not yet available. 

0953-8984192/1335h9+20~4.50 @ 1992 IOP Publishing h d  3569 
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Figure 1. Pan of the experimental phase diagram of Fe-AI alloys (from Kubaschemki 
198% in changed form). Only temperarum between 400 and 800 T and AI mncentrarions 
e from 10 to 35 at,% are shown. AI1 phases shown have the bdysenlered cubic ( B E )  
S I N C I U ~ ~  The disordered solid solution (A2 phase, nee figure 2, also denoted as 0 is 
paramagnelic for T > T,(c) and ferromagnetic for T < T,(c), T=(c) being shown 
as a chain line. AI high temperatures (612 < T < l O ' 2 Z T )  the paramagnelic A2 
phase transforms into a paramagnetic 52 phase (FeAI slructure, see figure 2) ria a 
second-order Mnsition. At T, = 61293 fie ferromagnetic line T, (c )  hits Ihe A% 
E2 order-dimder transition line in a bicrilical point. for 552 < T < 612 "c; hence 
a two-phase mexistence region m u m  between the ferromagnetic 0 and paramagnetic 
FeAl phases At 552T the (coherent) viple line involving the (paramagnetic) KaAI 
phase of DOa symmetry (figure 2) occurs. At T 5 510 T the FeSAI phase exhibib a 
(semnd-order) transilion to a ferromagnetic phase at sufficiently low iron mncentrations. 
Below T 4 0 0 T  another phase (KI), the nature of which iS mnuoversial, m n  W 
the left of the e-Fe3Al mexistence range, and is not included here. 

One of the classical alloy systems which has been of long-standing interest is that 
of the uon-aluminium alloy: its phase diagram (part of which we reproduce in fig 
ure 1) and ordering behaviour (figure 2) have been studied in detail (e.g. Bradley and 
Jay 1932, Thomas 1950, 1951, Davies 1953, Swam et a1 1972, Okamoto and Beck 
1971, Mrliment and Thomas 1974, Allen and Cahn 1975, 1976, Allen 1977, Koster 
and Godecke 1980, 1981, Schweika 1990, Pierron-Bohnes ef a1 1991a,b). Since iron 
is ferromagnetic, the iron-rich side of the phase diagram has complex and interesting 
magnetic properties (Nathans et a1 1958, Pickart and Nathans 1961, Beck 1971, Shull 
el ai 1976, Shiba and Nakamura 1976, Cable el a/ 1977, ShuMa and Wortis 1980, 
Kuentzler 1983, Min el af 1986); only the ferromagnetic paramagnetic transition line 
is included in figure 1, while spin-glass-type phases arc omitted (they would occur at a 
much lower temperature). The theoretical modelling of the order-disorder phenom- 
ena seen in figures 1 and 2 has also been of longstanding interest: applying mean-field 
approximations (Semenovskaya 1974, Sagane and Oki 1980), cluster variation tech- 
niques (Diinweg and Binder 19&7, Contreras-Soloria a al 1988a,b, Colinet el al 1991) 
and Monte Carlo methods (Dunweg and Binder 1987, Inden and Pepperhoff 1990). 
These studies approximate the iron magnetic degree of freedom by an Ising spin and 
do not, as yet, include recent information on the interaction parameters extracted 
from scattering experiments (Schweika 1990, Pierron-Bohnes er a1 1991a,b). Thus it 
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Figure 2. Pan of the Bcc lattice ordered (a) in the B2 slmcture; (b) the Dos suuciurq 
and (c) the B32 structure. (0) shows assignment of four sublattices a, b, c, d. In the A?. 
S ~ N C I U ~ ~  (not shown) the average mncentration of A and B atoms is identical on all 
four sublaltices, while in the 02 structure the mncentrafions of the b and d sublallices 
are the same, but differ from the concentration on the a and c sublatlices, which again 
are the same. I n  the DO3 s l ~ d u r e ,  lhe mncentrations 01 the a and c sublaltices are 
still the Same, while the concentration on sublattice b difers from the concentralion on 
sublattice d. Finally. in the I332 phase the mncentrations on sublattices a and h are 
the same, but ditier from the concentrations on the c and d sublaltices, which are then 
equal. 

is no surprise that these studies have only a limited success in their description of 
ordering behaviour in Fe-AI alloys. 

Hence the present work tackles this problem anew and is different in two impor- 
tant aspects from previous work 

(i) It takes into account the experimental fact that iron is nearly an isotropic 
ferromagnet, the magnetic degree of freedom is treated by the classical Heisenberg 
model rather than the king model. 

(ii) The interaction parameters developed by Schweika (1990) and Pierron-Bohnes 
(1991a,b) are used as input for extensive Monte Carlo simulations. 

Mean-field calculations are also carried out, but consistent with previous experi- 
ence (e.g. Diinweg and Binder 1987) we find them very unreliable. We show that 
the naive use of these interaction parameters (taken together with an estimate of 
the magnetic exchange interaction extracted from T,(c = 0)) yields phase diagrams 
which are inconsistent with observation. However, by suitably adjusting the ratio be- 
tween magnetic and non-magneric interaction parameters, a phase diagram is indeed 
found which-for the first time-has nicely reproduced all experimental features of 
the iron-rich side. 

The outline of this paper is as follows: in section 2, we define the model and 
present its ground-state properties. Section 3 presents exact expansions, a second- 
order high-temperature expansion and at low temperatures a spin wave expansion. 
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These expansions provide valuable 'reference states', which are needed for the ther- 
modynamic integration carried out in the cnntext of our Monte Carlo work in order 
to estimate the location of first-order transitions precisely. In addition, a quantum- 
mechanical spin wave analysis is carried out (note that the Monte Carlo work deals 
with classical Heisenberg spins, spin quantum number S 4 M, to assert the effects 
resulting from the fact that iron has spin quantum number S = 1). Section 4 presents 
the phase diagrams obtained from the Monte Carlo and mean-field calculations (tech- 
nically, all these calculations are similar to those of Diinweg and Binder (1974); some 
cnmments on these techniques are summarized in the appendix). No cluster varia- 
tion calculations were attempted-they are relatively laborious for alloys'with Ising 
spins, and would be extremely cumbersome for Heisenberg spins. Section 5 presents 
a discussion and an outlook for further work. 

F Schmid and K Binder 

Tabk 1. Experimental eElimates for interaction parameters (in mew. No cntly for ViR 
means lhal V:n was pul qual 10 zero in the analpis. 

Source 
. . . . . . . .. . , . 

Schwika (1990) Pierron-Bahnes a ol (1991a) Pierron-Bohnes a a1 (1991b) 
Inlemctions Shell T =  1013 K T=772 K T = 1473-1573 K 

. j ,  

V ; R  ( $ t o )  -17.5i2 -5.4 f 1.0 -1z:o i 1;b' 

c;:* (ffi) + a d o  i 2 - ~ 

V;e (100) -1.25f2 -1.3zk0.5 -2.0 f0.5 
V;@ (110) +4.0Oi .Z +5.0 k0.5 +2.5 * 0.5 
v;* (111) = o  +0.2 * 0 .5  -0.7 i. 0.5 

2. Model and ground-state analysis 

As emphasized in the introduction, our model restricts attention to configurational 
and magnetic degrees of freedom; phonons, lattice distortions, etc are disregarded 
completely, and a perfect BCC lattice is assumed from the start. Representing the 
situation in which a lattice site i is occupied by a magnetic atom (Fe) by Si = 
+I,  while Si = -1 indicates that i is occupied by a nonmagnetic ion (A), the 
Hamiltonian in the grand-canonical ensemble of the alloy is (cf, e.g., Binder 1986) 

Here oi is the unit vector in the direction of the spin representing the magnetic degree 
of freedom of the Fe ion; vi is the crystallographic interaction, J i j  the magnetic 
exchange interaction (which henceforth is restricted to nearest neighbours). The 
factors correct for overcounting the numbers of pairs ( i ,  j ) .  Note that (1+S;)/2 = 
e; is nothing but the local concentration variable of Fe atoms. As is well known, vi, 
is related to the painvise interaction energies U$*, U,$" and UP of AA, AB and BB 
pairs in a binary alloy AB as Kj = -(.CA + U$* - 2 4 * ) / 4 .  Tb avoid confusion, we 
stress that the 'field' H coupling the Ising spins is related to the chemical potential 
difference between the A and B atoms (see, e.g., Binder 1986); no real magnetic 
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field acting on the i o n  magnetic moments is included here, Also we have taken both 
V, and J i j  to be strictly independent of both the global concentration (c;)  and the 
local concentration of the nearest neighbours, also neglecting the possibility that an 
iron atom may lose some of its magnetic moment, if it has too many Al neighbours; 
see Beck (1971), Shukla and Wortis (1980) and Min ef ai (1986). nble 1 quotes the 
interaction parameters for the crystallographic interactions considered in this work. 
They were obtained from measurements at single crystals with an Al content of 
U) at.% or 19.5 at%, respectively, applying inverse Monte Carlo methods (Schweika 
et a1 1990) and inverse cluster variation methods (Pierron-Bohnes ef a1 1991a,h) at 
the temperatures quoted. Apart from statistical errors (resulting mostly from the 
inaccuracy of the experimental data), there may be significant systematic errors due 
to the approximate consideration of the magnetic contributions: for a fully consistent 
treatment of the problem, one would have to study both crystallographic and magnetic 
short-range order simultaneously. This approximate treatment of magnetism in the 
analysis leading to table 1 (neglecting it in the paramagnetic region, assuming perfect 
alignment at T = 772 K) is particularly dangerous, since the magnetic exchange 
energy is somewhat large: using the high-temperature series estimate (Rushbrooke et 
nl 1974) for the classical Heisenberg nearest-neighbour ferromagnet, 

' J  
kB Tc 
2 = 0.2435 

together with the Curie temperature of pure Fe (T, = 1043 K) yields 

J = 43.7 meV (3) 

while using the experimental estimates of the spin wave stiffness constant D, 'D = 
307 ZIC 15 meV 8? (Collins ef a1 1969) or 2, = 325 f 10 meV A2 ( b o n g  er a1 1984) 
would yield 

J = 37.2-39.5 meV. (4) 

Here the spin wave energy hw, is related to wavenumber q as hwq = Dq* = Ja;q* 
at low temperatures, and the iron lattice constant a, = 2.87 8, is used. It is seen that 
equations (3) and (4) agree to within 10% accuracy, but are larger than the nearest- 
neighbour crystallographic energy (table 1). Here the effective interaction parameters xeff are related to the V, as VPR = Vl + J/4 (T = 772 K, ferromagnetic region) 
and vff V, in all other cases. Note that the highest temperatures considered in 
table 1 are close to the melting transition of the alloy, and it is conceivable that due to 
lattice expansion effects they are significantly different from those at the temperatures 
near the order-disorder transitions. 

Motivated by the results shown in table 1, we first studied the following two 
models. 

ModelI: V, = -17.5 meV. 

V,/lVl[ = -0.07 l ~ / l V l l  = 0.23 V,/lVli = 0.11 

V,llVll = 0 J/lV,l = 2.5 (5) 

and 
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Model It: V, = -16.3 nleV. 

V2/lV,l = -0.081 V,/lV,l = 0.305 V, = V, = 0 J/lV,l = 2.676. 

F Schniid and K Binder 

(6) 

Model I is based on the data of Schweika (1990) and model I1 on the data of 
Pierron-Bohnes el a1 (1991a). Since, as we shall see, these models cannot reproduce 
the &AI system, we also studied a ‘toy model’ with weak magnetic interaction, 
namely model 111, which is the Same as model 11, except that 

J/lV,l = 0.67. (7) 

Model IV, finally, was chosen on the basis of the high-temperature data of Pierron- 
Bohnes et a1 (1991b). with the ratio J/lV,l suitably adjusted: 

V,/lV,l = -0.167 V,/lV,l = 0.208 1; = V5 = O  J / l x l  = 1.65. 

(8) 

Within their uncertainties the experimental data would be compatible with various 
similar models, but this was not explored. 

In the following we analyse the ground state of the model with general interactions 
V,, V,, V,, V, and J .  The ground-state energies per spin of the phases of interest 
are as follows (F stands for a ferromagnetic phase, P for a paramagnetic one): 

L U ( A 2 v F )  = -45 -4V1 -3VL -61,; -12V4 - H  (94 
(9b) 

- 1 u ( B 2 , P )  = +4V, -3V2 -GV, +12V4 (9c) 
(94  

. L U ( D O ~ . P )  N = - G V 3  (9e) 
L u ( A 2 , P )  N = -4V, - 3 4  -G\< -12V4 + $ H .  (% 

N 
L U ( D O s E  = -25 
N 

N 
- 1 u ( B 3 2 . F )  = - J  +3V2 -6\< N 

-1H -6V, 2 

It should be noted that the ground state contains the B2 phase if 

J < - 4 4  + CiV? - 12V4 (10) 

while otherwise the B32 phase occurs in the ground state. The A2(P,q and DO,(P,F) 
phases always occur at T = 0 for some ranges of the field ! I .  The transition fields 
if, between the various phases are found by equating the energies of the appropriate 
phases: 

HLA2-D03’F) = -45 -8V1 -GV2 -24V4 ( I l Q )  
-SV1 +OV’ -24V4 (116) Hc 

H C  - - -2J -6 Vz ( W  
H C  - +SVl -GV, +24V, (114 

tGV2 (1W H ,  
+SV, +GV2 +24V4. ( l l n  

(DOs,F-BZ,P) = .-4 J 

(DO,,F-B32,F1 - 
( B ~ , P - D O I , P J  - 
(BB?,F-OOJ.PJ = - 2 ~  

H~DOS--A?,PI - - 

We will return to these results in the following sections. 
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3. Exset expansions 

Exact expansions are carried out both at very high temperatures and at very low 
temperatures. These expansions are necessary for the following reasons: 

(i) In order to locate first-order phase boundaries, the accuracy of Monte Carlo 
simulation data is limited by hysteresis. Precision can be improved by thermodynamic 
integration methods, however. For methods such as these (Binder 1981) it is very 
useful to have reference states at high and low temperatures, the free energy of which 
is !mom from other sources. 

(ii) Comparing internal energies at the reference states and other obsewables 
obtained from the simulation with the exact expansion provides a very useful inde- 
pendent check on the Monte Carlo program. 

(iu) At low temperatures the quantum nature of the iron magnetic moment is 
dearly important. It is straightfonvard to incorporate the quantum nature of the spin 
in the framework of the spin wave approximation to the Heisenberg model, while it 
would be very cumbersome to do this by quantum Monte Carlo methods. 

3.1. High-temperature erpansion 
Here we only consider the expansion for the internal energy per lattice site. In 
principle the technique is a straightfonvard application of methods described by Domb 
(1974). Due to the relatively large range of the interaction and the simultaneous 
presence of crystallographic and magnetic interactions, the technique is rather tedious 
to apply, however, and hence only terms up to second order in ( kBT)- l  are derived. 
Here we only quote the final result (for more details see Schmid 1991). 

Equation (12) holds for arbitraly lattices and for both crystallographic and magnetic 
interaction of arbitraly range (for the classical Heisenberg model). Specializing to 
the case where only four interaction parameters {VI,} = {VI, V2, V,, V4} and the 
nearest-neighbour exchange are non-zero, as considered previously, the sums needed 
in equation (12) are, for the BCC lattice, 
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Voj = SV, + 6V2 + 12V3 + 24V4 
i 

~~jVj~V,.. = 7 2 ( q * V , +  V:V3+2Vl~V.+4VlV3& 
j 

+ ~3V3+2V2V42+3V3V~+ gv,",. (1%) 

Figure 3 shows, in the spirit of point (ii), a comparison between equation (12) and 
corresponding Monte Carlo data. In our case it is seen that this second-order expn- 
sion is generally satisfactory for /Vll/kBT 5 0.1, while the expansion to Erst order 
would only be accurate for V,/k,T 5 0.03 in unfavourable cases. 

IVtIIT 

I bl 

3 
-6 

-8 

-10 

0 at Ct2 0.3 
IVlI/T 

Flgum I PIol of internal energy U per lattice site against invem lemperature, for lhe 
model with V,/ lVl l  = -0.07, V3/lVll = 0.23 .  Vr/lV1l = 0.11 and J / l % l  = 2.6: 
(a) nfcrs to H/lV1l = 1; (b)  10 H/lV,l = 5.  Full and broken wrvcs denote high- 
temperature series to Bnt and secund order, respectively, while circles show lhe Monte 
Carl0 resulk. 

3.2 Spin wave analysis: chssical Heisenberg model 

At low temperatures the overturning of an king degree of freedom relative to the 
ground-state king spin configuration can be disregarded, in comparison with the 
magnetic excitations. This is true because overturning an Jsing spin always involves a 
non-zero excitation energy, at least if H differs from the critical values H, considered 
in equation (ll), while there is no gap in the spin wave spectrum; and thus there 
exist long-wavelength spin wave excitations of arbitrarily small excitation energy. They 
dominate the thermal behaviour at very low temperatures. 

Consequently, we assume in the following that the crystallographic structure b 
perfect. Only the ferromagnetic A2, DO, and B32 phases need be considered (para- 
magnetic E2 and DO, phases are non-interacting ideal paramagnets in the framework 
of this description as 5" - 0). While the ferromagnetic A2 phase (simple BCC Fe) 
amounts to a Bravais lattice, the two other structures do amount to non-Bravais 
lattices of the iron spins. 

The Hamiltonian in the general case can be written as in non-interacting s p h  
wave approximation 
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where a labels the sites in the basis cell of the (non-Bravais) lattice, and U; is the 
ku r i e r  transform of the spin operator at site IZT 

fi denoting the number of elementary cells in the system. The matrix A i B  in the 
presence of a magnetic field B coupling to the spins {up) is given by 

J i p  being the Fourier transform of the exchange interaction between a spin at 
sublattice o and spins at sublattice 0, 

The spin wave energies &; = hwl are found by diagonalizing the matrix At*.  By 
evaluating the partition function, the free energy can be witten in terms of the 
magnon energies as (NH is the number of Hcisenberg spins) 

(18) I 1 F = -X0 + k B T N  In  2 + - ~ I n ( & ~ / k B T )  , 
NH k.7 

From the free energy, both entropy S and magnetization 1LI are found by straight- 
forward differentiation. 

In the case of the ferromagnetic A2 phase, the lattice is a Bravais lattice pcc 
lattice with lattice constant a,,) and then 

a k  

2 2 2 
&k = B+ &(J, - J k )  = E +  8J 1 -cos *cos - cos - 

Thus 

(20) 
kB T 1 

M'Bda = IVH- 85 1 - cos (ao /2k , ) cos (ao /2k , ) cos (ao /2kz )  
k # O  

SI,,, = -k  N In( 16J/kBT) - 1 4 
Hence the Goldstone mode ( k  = 0) is omitted, since we assert that the symmetry is 
broken for B - 0, due to the existence of a spontaneous magnetization. 
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In the case of the B32 phase, the basis cell of the magnetic atoms contains two 
sites and hence Ai*  is a (2 x 2) matrix, 

M; denoting the conjugate complex of M,. From equations (22) and (23) it is easy 
to obtain the spin wave energies 

This yields for magnetization and entropy 

x c o s ? ( ? k ; )  - s in2  ($k,)sin2 Q (?k,)sin? (?k*)}. (26) 

In the ferromagnetic DO, phase we have three spins in the basis cell, and the matrix 
that needs to be diagonalized reads as Tollows 

where 
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The resulting spin wave energies are 

E L = B + 4 3  ( 2 9 4  

From this result magnetization and entropy follow as 

Figure 4 shows the temperature dependence of the magnetization for three typical 
cases, as compared with the Monte Carlo simulation. It is seen that the spin wave 
approximation is accurate for kB7'/[Vl [ 5 1. 
3.3. Spin wave analysis.. quanrum-mechanical Heisenberg model 

The extension of our treatment to the quantum mechanical case is fairly straght- 
forward, since equations (14)-(17) still remain valid, while equation (18) is replaced 
bY 

F = - R ~  + k,TCin[ l -  e x p ( - ~ L / k ~ ~ ) ] .  (32) 
k J  

One finds the magnetization and entropy as 
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0 
0 1 2 3 4 5  

T I  IV, I 

mgure 4 Temperature dependence 01 the magne- 
tization aceording lo the dassical Spin wave the- 
ory (slraight lines) and corresponding Monte Carlo 
dam: (a) refen 10 H/lV,l = 10 (a slate in the A2 
phase); (6) lo H/lt'il = -1.8 (a Slate in the 832 
phast); and (c) U) H/IVjI = -4.4 (a skate in the 
fermmagneric DO3 phase), for Ihe model with the 
same energy paramelen as in tigure 3. In  (U) the 
temperature dependence oi the A2 concentralion e 
is included (squares). 

Note that equations (19), (24) and (29) describing the spin wave energies in the ferro- 
magnetic A2, B32 and DO, phases remain valid. Nevertheless, the low-temperature 
behaviours of A4 and S differ drastically from the classical case, as expected while 
in the classical case the temperature dependence of M is linear, it now follows the 
T3/* law; while S in the classical case tends to minus infinity as T - 0, now S tends 
to zero in agreement with the third law of thermodynamics. 

A comparison between the classical and quantum-mechanical low-temperature 
phase diagram is presented in figure 5. It is seen that the ferromagnetic DO, and 
832 phases exist up to much higher temperatures in the quantum-mechanical case 
than in the classical case. 

4. Results for the phase dingnms 

Following the techniques described by Dunweg and Binder (1987) (see also the ap- 
pendix of the present paper and Schmid (1991)), mean-field and Monte Carlo phase 
diagrams were obtained for models I-IV, equations (5)-(8). 

Figures 6(a) and 6(b) show that for model I, the mean-field and Monte Carlo 
phase diagrams are similar, although the mean-field theory overestimates the uan- 
sition temperatures to the disordered phase by about a factor 1.5, and the B2-A2 
phase boundary according U) the simulation lacks the re-entranq predicted by the 
mean field calculation. As has already been shown in figure 5(b), the low-temperature 
pan of the mean-field phase diagram is in excellent agreement with the Monte Carlo 
data. It is remarkable that, although the B2 phase exists over a very wide range of T 
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Figure 5. (a) Grandcanonical phaw diagram in the T-H plane a1 low temperatures 
according IO the quantum-mechanical spin wave approximation (full cuwer) and the spin 
wave appmximalion for classical spins proken curves), for model I (equation (5)).  The 
nature of the various phases is indicated in the ligure Notc lhal J j l V ~ l  = 2.5 in the 
classical case, but J/lV, 1 = 1.35 in the quanlum case. (b) =me as (a), but dasical spin 
wave approximation (full NNU) compared with the mcan-field appmximalion proken 
cun'es). 

7 A l  

b 

EZvo - 5  
>- 
2 M O  

2.0 100 

200 

b. 
L - 
3 " 

2 

H/IV,I H/IV,I 

Figure 6. Grand-canonical phase diagram of model I in the T - H  plane according to 
mean-field (a) and Monte Carlo (b) calculations. Secondader lransitions are shown as 
broken CUNS, while lint-order transitions are shown as full CUNS. Tne nature of the 
various phases is indicated in lhe figure. 

and X, it is not the stable equilibrium phase for very low T ,  where the B32 phase 
takes over instead. 

"s la t ing this phase diagram from the grand-canonical ensemble of the alloy 
appropriately to the canonical ensemble (figure 7), comparison with the experimental 
results (figure 1) reveals a striking dissimilarity: clearly the B2 phase should be 
stable up to much higher temperatures than observed in figure 7, the ferromagnetic 
RSA phase is also missing, and the coexistence region between the ferromagnetic 
A2 and B2 phases is far too wide in figure 7. The same problems occur for model 11, 
figure %the main distinction being that for model I1 the B2 phase remains the stable 
down to T = 0. 

Thus, although both models I and II are supported by experimental results (ta- 
ble l), they are not capable of reproducing the correct phase diagram. While the 
magnetic interaction was adjusted in order to enforce the correct transition tempera- 
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clAI1 

Figure I. Canonical phase diagram of model I as 
Obtained from the Monte Carlo simulation. nvo- 
phase mexislence regions are shaded. Note that 
the ferromagnelic DO3 and 832 phases and mr- 
responding two-phase regions, which are not stable 
for T l l V t l  2 0.25, are omitted in this Rgure. 

Figure 8. Grandanonical (a) and canonical (b) phase diagram of model 11 (equa- 
lion (6)). Again in (a) xrond.ordcr transition lines arc shown as broken cum% while 
Ant-order lransilionr are Shown in full. and in (b) two-phase mexislence regions are 
shaded 

lure beween the ferro- and paramagnetic A2 phases as the AI content goes to zero, 
it is obvious that transition temperatures of the AZ-B2 order-disorder transition for 
Al concentrations near cA, % 30% are severely underestimated. Consequently, mod- 
els I and I1 suffer from the ratio of magnetic-to-crystallographic interactions being 
too large (with respect to its absolute value). As an extreme example of a model with 
a weak magnetic interaction, we treated model 111 (equation (7), see figure 9): now 
the Fe,Al phase would exist up to temperatures about as high as those of the FeAl, 
phase. It is clear, however, that for this modcl the magnetic interaction is too weak, 
since ferromagnetic A2 and DO, phsses only exist at extremely low temperatures. 

In view of this observation, it seems best to treat the ratio between magnetic 
and crystallographic interaction as an adjustable parameter, rather than the abso- 
lute strength of the magnetic exchange. This consideration motivates the choice of 
model IV, equation (8) ,  and indeed figures 10 and 11 reveal satisfactory behaviour. We 
recognize that the topology of the experimental phase diagram (figure 1) on the uon- 
rich side and the topology of figure 11 are the same-a coexistence region between 
the ferromagnetic A2 phase and the paramagnetic FeAl phase (E2 structure) exists 
underneath the bicritical point. (This is the first time that a model calculation has 
reproduced this feature of the phase diagram.) Both ferromagnetic and paramagnetic 
Fe,AI phases occur, separated by a critical line. This line terminates at critical end 
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Flgure 9. Grandcanonical (U )  and canonical (b) phase diagram of model 111 (equa- 
tion (7)). 
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Figure 10. Grand-canonical phase diagram of 
model IV (equation (8)) according to !he mean- 
field approximation (U) and the Monte Carlo sim- 

2.9 --f-..-- ulation (6). Second.order transitions are shown - 2 s- 2.8 3 . 0 L i l _ l  DOSwr. ___-. as shown broken in full. CUNW (c) show while a Snl-order detail near transitions the bicritical arc 

point in the phase diagram, where the critical lines 
of the A2 fe rwA2 para and A2432 ”itions 
meet. Note that the aitical line of h e  DOa para- 
82 Vansition meets the first-order transition tine 
between the ferromagnetic A2 phase and the para- 

711 7.1 7.2 7.3 7.4 magnetic, but aystailographically ordered phases in 

j Azt., 

- 

2.7 

2.6 

A.?,,. 

HIIVII a crilical end point. 

points on both sides-in the experimental phase diagram the low-temperature part 
of this line is unknown, of course, since for T 5 200° R-AI alloys are no longer 
in thermal equilibrium. Also the uicritical point where the secondader DO3-B2 
transition ends can perhaps be associated with an experimentally observed feature 
(interpreting the ‘K2 phase’ in figure 1 as a two-phase region between the Fe3Al and 
FeAl phases). 
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5. Discussion 

clAI1 

I;igurc 11. Canonical phase diagram of model W 
(equation (8)) aumrding to the mean-field appmx. 
imaiion (a) and tlie Monle Carlo simulation (6). 
Two-phase mexislence regions are shaded. Inset? 
in (b) gives details near the bicrilical poinl. 

In this paper, we have taken the interaction parameters extracted from scattering ex- 
periments from Fc,,,AI,,~ alloys and tried to use them to predict the iron-rich part of 
the phase diagram by Monte Carlo simulation. While the r su l t  is even qualitatively 
very different from reality when these interaction parameters are used in conjunction 
with an exchange constant fitted to the Curie temperature of pure iron, a qualitatively 
reasonably phased diagram results from treating the ratio of magnetic and crystallo- 
graphic interactions as an adjustable parameter. The comparison between simulation 
(figure l l(b)) and experiment (figure 1) still reveals significant differences between 
the quantitative location of various transition lines in the temperature-composition 
plane. As a consequence, we must conclude that our knowledge of cffective interac- 
tions in Fe-AI alloys is still not completely satisfactory. What would, in our opinion, 
be needed to clarify the situation are the following studies: 

(i) Simultaneous measurements of both crystallographic and magnetic short-range 
order (e.g. by polarized neutron scattering analysis) to estimate all effective interaction 
parameters in a coherent manner from one set of experimental data; 

(ii) Measurements at several Al concentrations (in the range of IO to 35% AJ 
content) to clarify whether it is a good approximation to take the effective interaction 
parameters independent of concentration; 

(iii) Simulation of order-disorder transitions in models which have full lattice- 
dynamical degrees of freedom, thus allowing at least for the different lattice spacings 
(and possibly also different lattice structures) of Fe and Al. It is possible that local 
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elastic distortions already play an important rule, even on the iron-rich side of the 
phase diagram. 

(iv) Peatment of the magnetic degree of freedom' of iron by quantum Monte 
Carlo methods (within the framework of Heisenberg as well as Hubbard models). 
Clearly, all these studies would be very demanding-and some of them may not even 
be feasible at this time. Thus, although the long-term prospects of a better under- 
standing ordering phenomena in alloys by computer simulation are very interesting, 
there are still challenging problems that need to be overcome. We hope that the 
present work will also stimulate interest in other suitable alloys, so that more mea- 
surements of elkctive interaction parameters become available, providing a broader 
test of corresponding models. 
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Appendix. Comment on the mean-field approximation 

In a mean-field or Brag-Williams approximation, mean concentrations and magne- 
tizations on a specified sublattice a, b, c or d (see figure Z(o)) are determined by the 
effective mean chemical field H$,c,d and magnetic field B:%,c,d acting on a particle 
in this sublattice. 

From (1) one gets 

with 

and 
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The partition function of a single lattice site in a field H e f f ,  BeR k given by 

F Schmid and K Bindet 

z = e-PH'" + e L ? H " ' L  (,PB'" - e-PS'") 
2PBef 

This leads m the mean-field equations: 

which can be solved numerically. 
Note that symmetry considerations may considerably reduce the number of equa- 

tions. Since magnetic interaction is purely ferromagnetic, e.g. the mean magneth- 
tions (U,) will always point in the same direction and the vectors in equations (A2) 
and (A&) might as well be replaced by scalars. 

Given different solutions of equation (A4), one still has to evaluate the free energy 
in order to determine its absolute minimum. The internal energy is given by 

V / ( N / ~ ) = - ~ C H ~ ( S , ) - ~ C B ~ ( U ~ ) ( I  + ( S , ) ) / 2 -  H x ( S , )  ('w 
0 0 0 

and the entropy due to chemical disorder 

TJ find an expression for the entropy due to magnetism is slightly more dilficult. If 
one considers a system of N non-interacting Heisenberg spins in a magnetic field B, 
one gets the magnetization and entropy 

(A761 
1 S(u )  = N k ,  In -(e" -e-" [ 2u 

with U = B / k  T 
B. ' As the function (U)(.) increases monotonically, this defines an inverse function 

of . ( (U) )  and therefore an entropy function i((u)) F S(u((u))).  Thus the entropy 
due to magnetism turns out to be 
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One finally arrives at the total free energy 

F =  u-T(S”agn+%em). 
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