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Medelling order—disorder and magnetic transitions in
iron-aluminium alloys

F Schmid and K Binder

Institut fir Physik, Johannes Gutenberg-Universitit Mainz, Siaudingerweg 7, D-6500
Mainz, Federal Republic of Germany

Received 22 Ocrober 1991

Abstracl. Information from recent x-ray and neutron diffuse scatlering investigations
of Fe-Al alloys and the resulting effeclive interaction parameters are used to construct
a model in which the lattice configurational degrees of freedom of these alloys are
described by Ising spins, and the magnetic mometits of iron atoms are described by
classical Heisenberg spins. Starting from the exac! ground state of the model, information
on the phase diagram al non-zero temperature s obtained from both spin wave theory,
mean-field approximations and extensive Monte Caro simulations. It is shown that
use of the unrenormalized interaction parameters from the various experimenis yields
a phase diagram which disagrees severely with experiment even at the qualitative level.
However, with a suitable renormalization of the ratio between magnetic and non-magnetic
interactions, a qualitatively reasonable phase diagram of the model is obtained. The
consequences for our understanding of effective interaction parameters in Fe-Al ailoys
are spelled out, and the implications for experimental work are discussed,

1. Introduction

The idea that order-disorder phenomena in binary alloys (AB) can be modelled by
Ising spin degrees of freedom (5; = +1,—~1 means that lattice site ¢ is occupied by
an A or a B atom, respectively) has been exploited for a long time (for reviews, see
for instance DeFontaine 1979, Binder 1986, Stocks and Gonis 1989, Inden and Pitsch
1991). Model descriptions in which phase diagrams are calculated from effective
interatomic interaction parameters in the alloy are of interest for various purposes:
as a test of “first principles’ electronic structure calculations of effective interaction
parameters (e.g. Gautier & af 1975, Gyorffy and Stocks 1983, Turchi et @/ 1983, Bieber
and Gautier 1984a,b, Gonis es ol 1987, 1989, Carlsson 1987, 1988); for testing various
methods of statistical mechanics, which always involve approximations or limitations
that need to be explored (e.g. Binder 1980, 1981, 1986, Diinweg and Binder 1987,
Kikuchi 1974, Kikuchi and van Baal 1974, Gahn 1982, 1986, Ackermann er o/ 1986,
Diep et al 1986, Sanchez and DeFontaine 1978, 1980, 1982, Mohri et al 1985, Finel
and Ducastelle 1986, Semenovskaya 1974, Khachaturyan 1978, Inden 1983, Inden
and Pepperhoff 1990, Colinet et af 1992); and as a check of the self-consistency of
effective interaction parameters derived from experiment (e.g. Gerold and Kern 1987,
Schweika 1990, Pierron-Bohnes er al 1991a,b). Last, but not Jeast, these models can
be used to predict the physical properties of the alloy, for a range of parameters
where experimenta) data are not yet available.
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Figure 1. Part of the experimental phase diagram of Fe-Al alloys (from Kubaschewski
1982, in changed form). Ouly temperatures between 400 and 800 °C and Al concentrations
¢ from 10 to 35 at.% are shown. All phases shown have the body-centered cubic (BCC)
structure. The disordered solid solution (A2 phase, see figure 2, also denoted as o is
paramagnetic for T > Telc) and ferromagnetic for T < Tc(c), Te(e) being shown
as a chain line. At high temperawures (612 < T < 1022°C) the paramagnetic A2
phase transforms into @ paramagnetic B2 phase (FeAl structure, see figure 2) via a
second-order transition. At T, = 612°% the ferromagnetic line T.(e¢) hils the AZ-
B2 order-disorder transition line in a bicritical point, for 552 < T < 612 °C; hence
a two-phase coexistence region occurs between the ferromagnetic o and paramagnetic
FeAl phases. At 552°C the (coberemt) triple line involving the (paramagnetic) Fes Al
phase of DO, symmetry (figure 2) occurs. At T £ 510 °C the Feg Al phase exhibits a
(second-order) transition to a ferromagnetic phase at sufficiently low iron concentrations.
Below T a2 400 °C another phase (K1), the nature of which is controvemsial, cccurs to
the left of the o~Fez Al coexistence range, and is not included here,

One of the classical alloy systems which has been of long-standing interest is that
of the iron-aluminium alloy: its phase diagram (part of which we reproduce in fig-
ure 1) and ordering behaviour (figure 2) have been studied in detail (e.g. Bradley and
Jay 1932, Thomas 1950, 1951, Davies 1953, Swann et af 1972, Okamoto and Beck
1971, Warliment and Thomas 1974, Allen and Cahn 1975, 1976, Allen 1977, Koster
and Gddecke 1980, 1981, Schweika 1990, Pierron-Bohnes et af 1991a,b). Since iron
is ferromagnetic, the iron-rich side of the phase diagram has complex and interesting
magnetic properties (Nathans ef a/ 1958, Pickart and Nathans 1961, Beck 1971, Shull
et al 1976, Shiba and Nakamura 1976, Cable e af 1977, Shukla and Wortis 1980,
Kuentzler 1983, Min et af 1986); only the ferromagnetic paramagnetic transition line
is included in figure 1, while spin-glass-type phases are omitted (they would occur at a
much lower temperature). The theoretical modelling of the order—disorder phenom-
ena seen in figures I and 2 has also been of longstanding interest: applying mean-field
approximations (Semenovskaya 1974, Sagane and Oki 1980), cluster variation tech-
niques (Diinweg and Binder 1987, Contreras-Soloria et af 1988a,b, Colinet et al 1991)
and Monte Carlo methods (Diinweg and Binder 1987, Inden and Pepperhoff 1990).
These studies approximate the iron magnetic degree of freedom by an Ising spin and
do not, as yet, include recent information on the interaction parameters extracted
from scattering experiments (Schweika 1990, Pierron-Bohnes et al 1991a,b). Thus it
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Figure 2. Part of the BcC lattice ordered (@) in the B2 structure; (&) the DO structure;
and (c) the B32 structure. (@) shows assignment of four sublattices a, b, ¢, d. In the A2
siructure {not shown) the average concentration of A and B atoms is identical on all
four sublattices, while in the B2 structure the concertrations of the b and d sublattices
are the same, but differ from the concentration on the a and c sublattices, which again
are the same. In the DO; structure, the concentrations of the a and ¢ sublattices are
stilt the same, while the concentration on sublattice b differs from the concentration on
sublattice d. Finally, in the B32 phase the concentrations on sublattices a and b are
the same, but differ from the concentrations on the ¢ and 4 sublattices, which are then

equal,

is no surprise that these studies have only a limited success in their description of
ordering behaviour in Fe-Al alloys.

Hence the present work tackles this problem anew and is different in two impor-
tant aspects from previous work:

(i) It takes into account the experimental fact that iron is nearly an isotropic
ferromagnet, the magnetic degree of freedom is treated by the classical Heisenberg
model rather than the Ising model.

(ii) The interaction parameters developed by Schweika (1990) and Pierron-Bohnes
(1991a,b) are used as input for extensive Monte Carlo simulations.

Mean-field calculations are also carried out, but consistent with previous experi-
ence (e.g. Dinweg and Binder 1987) we find them very unreliable. We show that
the naive use of these interaction parameters (taken together with an estimate of
the magnetic exchange interaction extracted from T.(c = 0)) yields phase diagrams
which are inconsistent with observation. However, by suitably adjusting the ratio be-
tween magnetic and non-magnetic interaction parameters, a phase diagram is indeed
found which—for the first time—has nicely reproduced ail experimental features of
the iron-rich side.

The outline of this paper is as follows: in section 2, we define the model and
present its ground-state properties. Section 3 presents exact expansions, a second-
order high-temperature expansion and at low temperatures a spin wave expansion.
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These expansions provide valuable ‘reference states’, which are needed for the ther-
modynamic integration carried out in the context of our Monte Carlo work in order
to estimate the location of first-order transitions precisely. In addition, a quantum-
mechanical spin wave analysis is carried out (note that the Monte Carlo work deals
with classical Heisenberg spins, spin quantum number S — oo, to assert the effects
resulting from the fact that iron has spin quantum number S = 1). Section 4 presents
the phase diagrams obtained from the Monte Carlo and mean-field calculations (tech-
nically, all these calculations are similar to those of Diinweg and Binder (1974); some
comments on these techniques are summarized in the appendix). No cluster varia-
tion calculations were attempted—they are relatively laborious for alloys with Ising
spins, and would be extremely cumbersome for Heisenberg spins. Section 5 presents
a discussion and an cutlook for further work.

Table L. Experimental estimates for interaction parameters (in meV). No entry for V¥
means that V% was put equal to zero in the analysis.

Source

Schweika (1990) Pierron-Rohnes e al (1991a) Pierron-Bohnes e al (1991b)

Interactions  Shell T=1013K T=772 K T =1473-1573 K
Vet (Alo) -17.5%2 —5.441.0 T -120£1.0

174 (100) -1.25%2 ~1.3+0.35 -2.0%0.5

1% (110) +4.00%2 +5.04+0.5 +2.5£0.5

ver (211) +2.00%2 - —_

Vet {(111) =0 +0.2£0.5 -0.T+£0.5

2. Model and ground-state analysis

As emphasized in the introduction, our model restricts attention to configurational
and magnetic degrees of freedom; phonons, lattice distortions, etc are disregarded
completely, and a perfect BCC lattice is assumed from the start. Representing the
situation in which a lattice site ¢ is occupied by a magnetic atom (Fe) by S; =
+1, while §; = —1 indicates that ¢ iS occupied by a non-magnetic ion (Al), the
Hamiitonian in the grand-canonical ensemble of the alloy is (cf, ¢.g., Binder 1986)

1 1 (1+ S; )14+ 5;)
H==zD ViS85 —5> J et —H ) S, (1)
i#j i%] ;

Here o, is the unit vector in the direction of the spin representing the magnetic degree
of freedom of the Fe ion; V;; is the crystallographic interaction, J;; the magnetic
exchange interaction (which henceforth is restricted t0 nearest neighbours). The
factors % correct for overcounting the numbers of pairs (z, 7). Note that (1+4.5,)/2 =
c; is nothing but the local concentration variable of Fe atoms. As is well known, V;;
is related to the pairwise interaction energies vA%, vA® and oPB of AA, AB and BB
pairs in a binary alloy AB as V;; = —(v2* +vEB - 2B} /4. To avoid confusion, we
stress that the ‘field” H coupling the Ising spins is related to the chemical potential
difference between the A and B atoms (see, e.g.,, Binder 1986); no real magnetic
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field acting on the iron magnetic moments is included here. Also we have taken both
V;; and J;; to be strictly independent of both the global concentration {c;) and the
local concentration of the nearest neighbours, also neglecting the possibility that an
iron atom may lose some of its magnetic moment, if it has too many Al neighbours;
see Beck (1971), Shukla and Wortis (1980) and Min et ol (1986). Table 1 quotes the
interaction parameters for the crystallographic interactions considered in this work.
They were obtained from measurements at single crystals with an Al content of
20 at.% or 19.5 at.%, respectively, applying inverse Monte Carlo methods (Schweika
et al 1990) and inverse cluster variation methods (Pierron-Bohnes et al 1991a,b) at
the temperatures quoted. Apart from statistical errors (resulting mostly from the
inaccuracy of the experimental data), there may be significant systematic errors due
to the approximate consideration of the magnetic contributions: for a fully consistent
treatment of the problem, one would have to study both crystallographic and magnetic
short-range order simultaneously. This approximate treatment of magnetism in the
analysis leading to table 1 (neglecting it in the paramagnetic region, assuming perfect
alignment at T = 772 K) is particularly dangerous, since the magnetic exchange
energy is somewhat large: using the high-temperature series estimate (Rushbrooke et
al 1974} for the classical Heisenberg nearest-neighbour ferromagnet,

g
2 =02
P 0.2435 2)

together with the Curie temperature of pure Fe (T, = 1043 K)) yields
J =43.7 meV 3

while using the experimental estimates of the spin wave stifiness constant D, D =
307 +£ 15 meV A? (Collins e af 1969) or D = 325 + 10 meV A? (Loong et al 1984)
would yield

J = 37.2-39.5 meV. C))]

Here the spin wave energy fiw, is related to wavenumber g as hiw, = Dg® = Jalg?
at Jow temperatures, and the iron lattice constant ¢, = 2.87 A is used. It is seen that
equations (3) and (4) agree to within 10% accuracy, but are larger than the nearest-
neighbour crystallographic energy (table 1). Here the effective interaction parameters
ViR are related to the V as Ve = V| + J/4 (T = 772 K, ferromagnetic region)
and V¥ = V| in all other cases. Note that the highest temperatures considered in
table 1 are close to the melting transition of the alloy, and it is conceivable that due to
lattice expansion efiects they are significantly different from those at the temperatures
near the order—disorder transitions.

Motivated by the results shown in table 1, we first studied the following two
modeis.

Model I V; = —17.5 mel.

V,/|Vyl = -0.07 Vi =023V /| =0.11
Ve/iVi| =0 J/Vi|=25 6]

and
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Model II' V, = —16.3 mel.

V,/1Vy] = —0.081 V,/|V,|=0.305 V,=V,=0  J/|Vj| =2.676.
(6)

Model I is based on the data of Schweika (1990) and model II on the data of
Pierron-Bohnes et af (1991a). Since, as we shall see, these models cannot reproduce
the Fe-Al system, we also studied a ‘toy model’ with weak magnetic interaction,
namely model ITI, which is the same as model II, except that

J/|V,| = 0.67. G

Model IV, finally, was chosen on the basis of the high-temperature data of Pierron-
Bohnes et al (1991b), with the ratio J/|V|| suitably adjusted:

Vo /IV)| = —0.167 V3/| V] =0.208 V,=V; =0 J/V;| = 1.85.
®

Within their uncertainties the experimental data would be compatible with various
similar models, but this was not explored,

In the following we analyse the ground state of the model with general interactions
Vi, V,, Va, V, and J. The ground-state energies per spin of the phases of interest
are as follows (F stands for a ferromagnetic phase, P for a paramagnetic one):

Lyuazh) = 4 -4V, -3V, -6V; -12V, -H (9a)
Lu®osF) = 27 -6V, -LH (90)
LUB2P) - o +4V, -3V, -6V; +12V, {Sc)
Ly®szF) = _ g +3V, -6V, (5d)
1 (PosP) = : -6V, (%)
LUBLFR) = -4V, -3V, -8V, -12V, +iH. )]

It should be noted that the ground state contains the B2 phase if
J <-4V + 6V, - 12V (10)

while otherwise the B32 phase occurs in the ground state. The A2(BF) and DO, (PF)
phases always occur at 7 = 0 for some ranges of the field H. The transition fields
H_ between the various phases are found by equating the encrgies of the appropriate
phases:

(A2-DOSF) 4y _gV, -6V, -24V, (11a)
HDOF-BZP) 4 _8V, +6V, -24V, (11b)
HDO2F=B32F) o -6V, (11¢)
Hgsz,P-DO,,P} - +8V, -6V, 424V, (11d)
(B32F-DOsP) g5 +6V, (11e)
(DO3—A2,P) +8V, +6V, +24V. (11f)

We will return 1o these results in the following sections.
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3. Exact expansions

Exact expansions are carried out both at very high temperatures and at very low
temperatures. These expansions are necessary for the following reasons:

(i) In order to locate first-order phase boundaries, the accuracy of Monte Carlo
simulation data is limited by hysteresis. Precision can be improved by thermodynamic
integration methods, however. For methods such as these (Binder 1981) it is very
useful to have reference states at high and low temperatures, the free energy of which
is known from other sources.

(ii) Comparing internal energies at the reference states and other observables
obtained from the simulation with the exact expansion provides a very useful inde-
pendent check on the Monte Carlo program.

(iii) At low temperatures the quantum nature of the iron magnetic moment is
clearly important. It is straightforward to incorporate the quantum nature of the spin
in the framework of the spin wave approximation to the Heisenberg model, while it
would be very cumbersome to do this by quantum Maonte Carlo methods.

3.1. High-temperature expansion

Here we only consider the expansion for the internal energy per lattice site. In
principle the technique is a straightforward application of methods described by Domb
(1974). Due to the relatively large range of the interaction and the simultaneous
presence of crystallographic and magnetic interactions, the technique is rather tedious
to apply, however, and hence only terms up to second order in (kg7 )~! are derived.
Here we only quote the final result (for more details see Schmid 1991).

- 1 2, 1 2
U= {(H)/N=—(kgT)™ (H2 +52 Ve + EZZJOJ.)
7 7

1 . 1 1
+ 5 (kpT) 2{ Z (gvoné’_,- +3H*Vy,; + 4—HJ§J-)
K

1
+ Z (anv}kvko + ?JJDJ'ijJko) } (12)
J#k#0 -

Equation (12) holds for arbitrary lattices and for both crystallographic and magnetic
interaction of arbitrary range (for the classical Heisenberg model). Specializing to
the case where only four interaction parameters {V},} = {V],V,, V,,V,} and the
nearest-neighbour exchange are non-zero, as considered previously, the sums needed
in equation (12} are, for the BCC lattice,

STVE =8VE+ 6V + 12V + 242 (13a)
i

S JE =8J? > Joi e =0 (13b)
i i

YV, 0y =8V, J? (13¢)
i



357 F Schmid and K Binder

> Vo =8V, 48V, 412V, 4 24V, (13d)
i

S Vo VieVao = T2(V2V, + VEV; + 2V, WV, + AU VY,
b)
+ VPV 42V, V2 + 3V, V7 + 1VR). (13)

Figure 3 shows, in the spirit of point (i), a comparison between equation (12) and
corresponding Monte Carlo data. In our case it is seen that this second-order expan-
sion is generally satisfactory for |V;|/kgT < 0.1, while the expansion to first order
would only be accurate for V| /kgT < 0.03 in unfavourable cases.

ta)  F ' (M F
0f I of
Ak -2t
] -4F
S 2% o Ty > r
] \.‘ .6:-
E @ e L
'3;- %s -8t
E °°o, k
E LI L
-4 51 ........ biecifiail Latsspinta | FEREEE -16 :.“
0 al 0.2 03
T

Figure 3. Plot of internal energy U per laltice site against inverse lemperature, for the
model with Va/[Vi| = —-0.07, Va/]Vi| = 0.23, Vi/|Vi| = 0.11 and Jf|Vi| = 2.5:
(@) refers to H/|Wi|=1; (b) to H/{Vi| = 5. Full and broken curves denate high-
temperature series to first and second order, respectively, while circles show the Monte
Carlo results.

3.2. Spin wave analysis: classical Heisenberg model

At low temperatures the overturning of an Ising degree of freedom relative to the
ground-state Ising spin configuration can be disregarded, in comparison with the
magnetic excitations. This is true because overturning an Ising spin always involves a
non-zero excitation energy, at least if H differs from the critical values J_ considered
in equation (11), while there is no gap in the spin wave spectrum; and thus there
exist long-wavelength spin wave excitations of arbitrarily small excitation energy. They
dominate the thermal behaviour at very low temperatures.

Consequently, we assume in the following that the crystallographic structure is
perfect. Only the ferromagnetic A2, DO, and B32 phases need be considered (para-
magnetic B2 and DO, phases are non-interacting ideal paramagnets in the framework
of this description as T — 0). While the ferromagnetic A2 phase (simple BcC Fe)
amounts to a Bravais lattice, the two other structures do amount to non-Bravais
lattices of the iron spins.

The Hamiltonian in the general case can be written as in non-interacting spin
wave approximation

H=Ho+ 5 ZZAE‘G[O‘QE be L o2¥aPy (14)
ko8
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where o labels the sites in the basis cell of the (non-Bravais) lattice, and of is the
Fourier transform of the spin operator at site R

1
o = — Y ofexp(ik- RY) (15
o TR Ej i ¥

N denoting the number of elementary cells in the system. The matrix Aﬁﬂ in the
presence of a magnetic field B coupling to the spins {o§} is given by

AZP = [\/N (Z J§ 8,5 - J,‘:ﬂ) + Baaﬂ] (16)
¥

J,‘:ﬁ being the Fourier transform of the exchange interaction between a spin at
sublattice o and spins at sublattice 3,

1
Jz"s = ——,ZJ&‘B exp('lkoR?). 17
V5

The spin wave energies £ = hw are found by diagonalizing the matrix AZ?. By
evaluating the partition function, the free energy can be written in terms of the
magnon energies as (Ny is the number of Heisenberg spins)

F = —'Hg + kBTN

In2+ NL > ln(gg/zcg'r)] : (18)
H k")‘

From the free energy, both entropy S and magnetization A/ are found by straight-
forward differentiation.

In the case of the ferromagnetic A2 phase, the lattice is a Bravais lattice (BCC
lattice with lattice constant ¢,) and then

. & .
& =B+ /Ny(Jy—J,)=B+8J [1 —cos a“;" cos af‘l) ¥ cos a":z] . (19)
Thus
kg T 1
Mlg_qo= Ny — -2 20
lg—o L) 70 1 - cos(ay/2k,) cos(ay/2k,) cos(a,/2k, ) @0

Slg_o = —kBNH{ In(16J/kgT) -1
+ 7\’—1; g:o [1 ~cos (%ﬂfcz) cos (%ky) cos (%ka)] } 21

Hence the Goidstone mode (k = 0) is omitted, since we assert that the symmetry is
broken for B — 0, due to the existence of a spontaneous magnetization.
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In the case of the B32 phase, the basis cell of the magnetic atoms contains two
sites and hence A2® is a (2 x 2) matrix,

aff _ B+4J Mh
A ‘( M{ B+4J @2)

where

M, = —J{1 + expliag(k, — &,)] + expliag(k, — k)] + expliag(—k, ~ £,)]}
(23)

M denoting the conjugate complex of A,. From equations (22) and (23) it is easy
to obtain the spin wave energies

2%y, 2 Qo 7 { g,
cos (?Az)cos (?ky cos —2—1._,

+ sin’ (‘%_0.&) sin® (%—“ky) sin’ (%D-k) ] m}. (24)

This yields for magnetization and entropy

3;"’=B+4J{1i

M|g_o=Ny— i, {1 — cos’ (%"-kx) cos? (?_;—oky) cos? (f_‘lk;)

27 & 3 3
— sin? (%ﬂkw) sin® (%Qky) sin? (fgﬂa) }_] ©5)
Slp_o = kg Ngln(8J/kgT)] =1 + NQ- S {1 - cos® (22t ) cos? (32K, )
H zo < =

% cos’ (%k:) - sin? (%gkr) sin? (%Qky) sin® (%kz) } (26)

In the ferromagnetic DO, phase we have three spins in the basis cell, and the matrix
that needs to be diagonalized reads as follows

B4 ad 0 M, (k)
AP = 0 B+4J M,yk) (27
Mk M3(k) B+8J
where
M (k) = —J{1 + expliag(k, — k,)] 4 expliag(k, — &,)] + expliag(—k, — &,)]}
(28a)

My(k) = —J{1 + expliag(k, + k.)] + expliag(k; — k)] + expliag(—k, + k.)}}-
(28)
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The resulting spin wave energies are

=B44J (29a)

2= B+6J+ 2.1{1 +8 [cos’ (%kz) cos? (“—z‘lky) cos” (i‘zﬂk)]

+ 8 [sin2 (323!6:) sin ( Lk )5111 (a—z"—k,)] }1/2. (29)

From this result magnetization and entropy follow as

=

M‘3~0=NH—E§ {l-l-g{l—cos ( b 3 )cos (?k )cosz(%"—kz)

k0
— sin? (5‘2—%) sin? (%Qky) sin? (%L)]—l} (30)
Slgoo = -k'BNH{ In(8J/kgT) + l—r-l—d -1 = Zin [ — cos® (%kr)
H k20 =

X cos® (%"-ky) cos® (%k:) ~ sin? (—;Z-ri) sin® (%U—ky)
x sin? (k. ) } } (31)

Figure 4 shows the temperature dependence of the magnetization for three typical
cases, as compared with the Monte Carlo simulation. It is seen that the spin wave
approximation is accurate for kg T/|V(I < 1.

3.3. Spin wave analysis: quantum-mechanical Heisenberg model

The extension of our treatment to the quantum mechanical case is fairly straight-
forward, since equations (14)-(17) still remain valid, while equation (18) is replaced
by

F=—Hy+kgTY [l - exp(~&] fhgT)). (32)

k.

One finds the magnetization and entropy as

Mlg_o= Ny~ > exp(—& kg T)/1 — exp( =& kg T)) (33)
k#0,§
Slgo=kg > _{(E/ksT)exp(~E] [kyT)}/IL = exp(~E} [k T)]
k#D

—In[1 — exp(—&7 / kg T)]. (34)
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Note that equations (19), (24) and (29) describing the spin wave energies in the ferro-
magnetic A2, B32 and DO, phases remain valid. Neverthcless, the low-temperature
behaviours of M and S differ drastically from the classical case, as expected: while
in the classical case the temperature dependence of M is linear, it now follows the
T3/2 law; while S in the classical case tends to minus infinity as T — 0, now S tends
to zero in agreement with the third law of thermodynamics,

A comparison between the classical and quantum-mechanical low-temperature
phase diagram is presented in figure 5. It is seen that the ferromagnetic DO, and
B32 phases exist up 1o much higher temperatures in the quantum-mechanical case
than in the classical case.

4. Results for the phase diagrams

Following the techhiques described by Diinweg and Binder (1987) (see also the ap-
pendix of the present paper and Schmid (1991)), mean-field and Monte Carlo phase
diagrams were obtained for models I-1V, equations (5)-(8).

Figures 6(a) and 6(b) show that for model I, the mean-field and Monte Carlo
phase diagrams are similar, although the mean-field theory overestimates the tran-
sition temperatures to the disordered phase by about a factor 1.5, and the B2-A2
phase boundary according 10 the simulation lacks the re-entrancy predicted by the
mean field calculation. As has already been shown in figure 5(b), the low-temperature
part of the mean-field phase diagram is in excelient agreement with the Monte Carlo
data. It is remarkable that, although the B2 phase exists over a very wide range of T
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Figure 5. (2) Grand-canonical phase diagram in the T-H plane at low temperatures
according to the quantum-mechanijcal spin wave approximation (full curves) and the spin
wave approximation for classical spins (broken curves), for model 1 {equation (5)). The
nature of the various phases is indicaled In the figure. Note that J/[V1| = 2.5 in the
classical case, but J/IVi] = 1.35 in the quantum case. (b) same as (g), but classical spin
wave approximation (full curves) compared with the mean-field approximation (broken
curves).
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Figure 6. Grand-canonical phase diagram of madet | in the T-H plane according to
mean-field (2) and Monte Carlo {b) calculations. Second-order transitions are shown as
broken curves, while first-order transitions are shown as full curves. The nature of the
various phases is indicated in the figure,

and H, it is not the stable equilibrium phase for very low T, where the B32 phase
takes over instead.

Translating this phase diagram from the grand-canonical ensemble of the alioy
appropriately to the canonical ensemble (figure 7), comparison with the experimental
results (figure 1) reveals a striking dissimilarity: clearly the B2 phase should be
stable up to much higher temperatures than observed in figure 7, the ferromagnetic
Fe; Al phase is also missing, and the coexistence region between the ferromagnetic
A2 and B2 phases is far too wide in figure 7. The same problems occur for model II,
figure 8—the main distinction being that for model 11 the B2 phase remains the stable
down to 7' = 0.

Thus, although both models I and I are supported by experimental results (ta-
ble 1), they are not capable of reproducing the correct phase diagram. While the
magnetic interaction was adjusted in order to enforce the correct transition empera-
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Figure 8. Grand-cancnical (@) and canonical (b) phase diagram of model !l (equa-
tion (6)). Again in (g} sccond-order transition lines are shown as broken curves, while
first-order transitions are shown in full, and in (b} two-phase coexistence regions are
shaded.

ture between the ferro- and para-magnetic A2 phases as the Al content goes to zero,
it is obvious that transition temperatures of the A2-B2 order-disorder transition for
Al concentrations near ¢, &~ 30% are severely underestimated. Consequently, mod-
els T and II suffer from the ratio of magnetic-to-crystallographic interactions being
too large (with respect to its absolute value). As an extreme example of a model with
a weak magnetic interaction, we treated model I1I (equation (7), see figure 9): now
the Fe;Al phase would exist up to temperatures about as high as those of the FeAl,
phase. It is clear, however, that for this model the magnetic interaction is too weak,
since ferromagnetic A2 and DO, phases only exist at extremely low temperatures,
In view of this observation, it scems best to reat the ratio between magnetic
and crystallographic interaction as an adjustable parameter, rather than the abso-
lute strength of the magnetic exchange. This consideration motivates the choice of
model IV, equation (8), and indeed figures 10 and 11 reveal satisfactory behaviour. We
recognize that the topology of the experimental phase diagram (figure 1) on the iron-
rich side and the topology of figure 11 are the same—a coexistence region between
the ferromagnetic AZ phase and the paramagnetic FeAl phase (B2 structure) exists
underneath the bicritica] point. (This is the first time that a model calculation has
reproduced this feature of the phase diagram.) Both ferromagnetic and paramagnetic
FegAl phases occur, separated by a critical line. This line terminates at critical end
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B2 wransition meets the first-order transition line
between the ferromagnetic A2 phase and the para-
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points on both sides—in the experimemal phase diagram the low-temperature part
of this line is unknown, of course, since for T < 200° Fe-Al alloys are no longer
in thermal equilibrium. Also the tricritical pomt where the second-order DO,-B2
transition ends can perhaps be associated with an experimentally observed feature
(interpreting the ‘K2 phase’ in figure 1 as a two-phase region between the Fe, Al and
FeAl phases).
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5. Discussion

In this paper, we have taken the interaction parameters extracted from scattering ex-
periments from Fe, ;Al, , alloys and tried to use them to predict the iron-rich part of
the phase diagram by Monte Carlo simulation. While the result is even qualitatively
very different from reality when these interaction parameters are used in conjunction
with an exchange constant fitted 1o the Curie temperature of pure iron, a qualitatively
reasonably phased diagram results from treating the ratio of magnetic and crystallo-
graphic interactions as an adjustable parameter. The comparison between simulation
(figure 11(b)) and experiment (figure 1) still reveals significant differences between
the quantitative location of various transition lines in the temperaturc-composition
plane. As a consequence, we must conclude that our knowledge of cffective interac-
tions in Fe-Al alloys is still not completely satisfactory. What would, in our opinion,
be needed to clarify the situation are the following studies:

(i) Simultaneous measurements of both crystallographic and magnetic short-range
order (e.g. by polarized neutron scattering analysis} to estimate all effective interaction
parameters in a coherent manner from one set of experimental data;

(ii) Measurements at several Al concentrations (in the range of 10 to 35% Al
content) to clarify whether it is a good approximation to take the effective interaction
parameters independent of concentration;

(iit} Simulation of order—disorder transitions in models which have full lattice-
dynamical degrees of freedom, thus allowing at least for the different lattice spacings
{and possibly also different lattice structures) of Fe and Al It is possible that local
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elastic distortions already play an important role, even on the iron-rich side of the
phase diagram.

(iv) Treatment of the magnetic degree of freedom of iron by quantum Monte
Carlo methods (within the framework of Heisenberg as well as Hubbard models).

Clearly, all these studies would be very demanding—and some of them may not even
be feasible at this time. Thus, although the long-term prospects of a better under-
standing ordering phenomena in alloys by computer simulation are very interesting,
there are still challenging problems that need to be overcome. We hope that the
present work will also stimulate interest in other suitable alioys, so that more mea-
surements of effective interaction parameters become available, providing a broader
test of corresponding models.
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Appendix. Comment on the mean-field approximation

In a mean-field or Bragg-Williams approximation, mean concentrations and magne-
tizations on a specified sublattice a, b, ¢ or d (see figure 2(a)) are determined by the
effective mean chemical field HZf, . , and magnetic field BS, . 4 acting on a particle
in this sublattice.

From (1) one gets

Hf = H 4+ H (a=a,b,c,d) (A1)
with
HY = (4V, + 12V )({S0) + (Sa))} + 6Va(S,) + 12V4(5,)
H° = (4V] + 12V, 3({S.) + {S)) + 6 Va(S,} + 12V4(S,)
= (4V, + 12V, )((S,) + (5p)) + 6 V5 (Sy) + 12V4(S.)
= (4 + 12V)((5,) + (Sp)) +6V3(5,) + 12V5(Sy)
and
BSt = B (A2)
BY= B = 4J (¢ c)1+2(8c)+( >1+2(sd)
1+<Sa> 1+(Sb>
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The partition function of a single lattice site in a field H°%, B is given by

z =e_ﬁHn!| +eﬂH=H 1 eﬁ(eﬁBefl —e_ﬁBef[) (A3)
288

This leads to the mean-field equations:

(So) = % {"e"?”;" + ef 8" SHBEF Beﬁ( etBBI _ "“3")} (Ada)
o )( + { a))__: 1 Mml ( 1 1 )eﬁB;u
T Z gBeff (Jgggrr)z
1 1 _gpe | B
+(ﬁBgﬂ+(ﬁﬂaﬂ>2)eaB"}FﬁF L (A4)

which can be solved numerically.

Note that symmetry considerations may considerably reduce the number of equa-
tions. Since magnetic interaction is purely ferromagnetic, e.g. the mean magnetiza-
tions {c,} will always point in the same direction and the vectors in equations (A2)
and (A4b) might as well be replaced by scalars.

Given different solutions of equation (A4), one still has to evaluate the free energy
in order to determine its absolute minimum. The internal energy is given by

UHN4) =~} Z H3(S,) = S BUe) (1 +(S.))/2 - HS (5,) (AS)

and the entropy due to chemical disorder

Suem/(N/4) = =3 [1 +2(S,°') o (1 +2(sa)) 3! —isa) In (1 -§Sa>)] _

e =

(A6)

T find an expression for the entropy due to magnetism is slightly more difficuit. 1f
one considers a systern of V non-interacting Heisenberg spins in a magnetic ficld B,
one gets the magnetization and entropy

oyeu—1l) e ¥ (u+1)
{o)(u) =N u(e¥ —e-¥)

(ATa)

S(u) = NkgIn [,)_il(eu _ e‘“}] — kyulo)(u) (A7)

with u = B /kgT.

As the function {o)(u) increases monotonically, this defines an inverse function
of u((e}) and therefore an entropy function S({c)) = S(u({e))). Thus the entropy
due to magnetism turns out 10 be

Smagn/(N74) = 3 22 2d 505 ). (48)

G “
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One finally arrives at the total free energy

F = U = T(Smagn + Sehem)- | (A9)
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